Physik

Warum braucht man zur Kernfusion 150 Millionen Grad, wenn auf der Sonne 15 Millionen Grad reichen?

Stand
Autor/in
Gábor Paál
Gábor Paál

In der Tat ist die Idee bei der Kernfusion, die Vorgänge auf der Sonne zu kopieren. Die Energie, die uns die Sonne schenkt, beruht auf der Kernfusion: Jeweils vier Wasserstoffkerne verschmelzen zu einem Heliumkern und dabei werden enorme Mengen an Energie frei. Energie, die die Sonne dann zu uns abstrahlt.

Erde hat weniger Masse als die Sonne – daher fehlt es ihr an Druck

Im Inneren der Sonne passiert das bei etwa 15 Millionen Grad Celsius. Wenn man das aber auf der Erde imitieren will, braucht man Temperaturen, die zehnmal so hoch sind. Das liegt daran, dass wir auf der Erde nicht den Druck herstellen können, der im Inneren der Sonne herrscht. Der liegt bei 250 Milliarden bar. Das liegt an der schieren Masse der Sonne, die im Sonnenkern diesen Druck ausübt – 250 Milliarden mal mehr als an der Erdoberfläche.

Höhere Temperatur muss auf der Erde fehlenden Druck ersetzen

In einem technischen Fusionsreaktor kann man diesen Druck unmöglich herstellen; da würde uns alles um die Ohren fliegen. Im Gegenteil, der Druck z.B. beim Reaktor "Wendelstein 7-X" in Greifswald liegt bei 1 bis 2 bar, also nicht viel höher als der Druck, dem wir normalerweise auf der Erde ausgesetzt sind. Aber das, was an Druck fehlt, muss dann durch Temperatur ersetzt werden.

1:1-Gummimodell des Stellarators "Wendelstein 7X", der mögliche Ofen zukünftiger Kernfusionskraftwerke, im Jahr 2000 zu sehen am Greifswalder Max-Planck-Institut
1:1-Gummimodell des Stellarators "Wendelstein 7X", im Jahr 2000 zu sehen am Greifswalder Max-Planck-Institut

Auch wenn man also die Kernfusion auf der Erde immer mit den Vorgängen auf der Sonne vergleicht, gibt es diesen wesentlichen Unterschied: In der Sonne ist der Druck extrem viel höher, dafür die Temperatur niedriger. In einem irdischen Fusionsreaktor ist der Druck niedrig, dafür müssen höhere Temperaturen erzeugt werden.

Kirschen am Baum: Man kann sich ein Wasserstoffatom vorstellen wie eine Kirsche: in der Mitte der Kern, außen herum die Hülle. Der Kern ist positiv geladen, die Hülle negativ. Wenn sich zwei Atome näherkommen, müssen die Kerne zusammenkommen. Spontan würden sie das aber nicht tun, dann dazwischen sind die Hüllen – bei der Kirsche also das Fruchtfleisch. Da die Hüllen bei den Atomen beide negativ geladen sind, würden sie sich abstoßen.
Man kann sich ein Wasserstoffatom vorstellen wie eine Kirsche: in der Mitte der Kern, außen herum die Hülle.

Warum müssen Druck bzw. Temperatur überhaupt so hoch sein?

Die Voraussetzung dafür, dass die Atomkerne überhaupt zusammenkommen können, sind der hohe Druck bzw. die hohe Temperatur. Man kann sich ein Wasserstoffatom vorstellen wie eine Kirsche: in der Mitte der Kern, außen herum die Hülle. Der Kern ist positiv geladen, die Hülle negativ. Wenn sich zwei Atome näherkommen, müssen die Kerne zusammenkommen. Spontan würden sie das aber nicht tun, dann dazwischen sind die Hüllen – bei der Kirsche also das Fruchtfleisch. Da die Hüllen bei den Atomen beide negativ geladen sind, würden sie sich abstoßen. Die Kerne können deshalb nur dann zusammenkommen, wenn die Atome – also in unserem Bild die Kirschen – schnell oder eben kräftig genug aufeinander prallen. Dazu braucht man entweder viel Druck oder entsprechend hohen Temperaturen – denn je höher die Temperatur, desto schneller bewegen sich die Atome. Und nur dann haben die Wasserstoffkerne überhaupt eine Chance, zusammenzukommen.

Physik Wie kann die Sonne im Vakuum "brennen"?

Tatsächlich "brennt" die Sonne durch einen Vorgang, der sich in ihrem Inneren abspielt. Da verschmelzen die Atomkerne beispielsweise von Wasserstoff – einem Gas, aus dem die Sonne besteht. So entsteht ein anderes Gas: Helium. Von Bruno Martin Deiss

Physik Warum ist das Weltall so kalt? Und wird es noch kälter?

Früher war die Temperatur sehr hoch, Millionen Grad. Sie hat sich jetzt so weit abgekühlt, dass das Universum heute eine Temperatur von -270°C hat. Von Bruno Martin Deiss

Astronomie Woher wissen wir, wie die Milchstraße von "außen" aussieht, wenn wir doch mittendrin sind?

Wenn Sie ein Bild sehen, das die Milchstraße von außen zeigt, dann kann es sich nicht um eine "Originalaufnahme" handeln, sondern nur um eine mehr oder weniger realistische Projektion auf der Basis dessen, was die Astronomen heute über die Verteilung der Sterne wissen. Von Gábor Paál | Text und Audio dieses Beitrags stehen unter der Creative-Commons-Lizenz CC BY-NC-ND 4.0.

Derzeit gefragt

Sehkraft Wie kann man den Augen etwas Gutes tun?

Es gab immer wieder Hinweise, dass es möglich sein könnte, die Sehschärfe durch spezielle Augenübungen zu verbessern. Ist da wirklich was dran? Von Norbert Pfeiffer | Text und Audio dieses Beitrags stehen unter der Creative-Commons-Lizenz CC BY-NC-ND 4.0.

Redewendung "Ach du grüne Neune!" – Woher kommt der Ausdruck?

Über die Herkunft sind sich die Sprach- und Sprichwortforscherinnen und -forscher nicht ganz einig. Eine Idee lautet, dass die Redewendung aus einem Berliner Lokal kommen könnte. Von Rolf-Bernhard Essig

Physik Dehnt sich das Universum schneller als Lichtgeschwindigkeit aus?

Dass die Lichtgeschwindigkeit eine Grenze ist, hat auch etwas mit Einstein zu tun, aber nur mit seiner speziellen Relativitätstheorie. Von Bruno Martin Deiss

Intelligenzforschung Wie hängen Sprache und Intelligenz zusammen?

Intelligenz ist an Symbole gebunden. Sprache ist ein Symbol. Und ohne die Fähigkeit, Symbole zu haben, könnten wir nicht die Intelligenz zeigen, die wir haben. Von Elsbeth Stern

Zeitgeschichte Gab es Zusagen an Moskau, die NATO nicht nach Osten zu erweitern?

Wurde in den Verhandlungen 1990 eine entsprechende Zusage getroffen? Von Gábor Paál | Text und Audio dieses Beitrags stehen unter der Creative-Commons-Lizenz CC BY-NC-ND 4.0.

Erinnerung Warum denkt man im Alter öfter an Ereignisse aus der Jugend?

Die rechte Großhirnhemisphäre altert etwas schneller als die linke, sodass wir etwas weniger neugierig werden. Wie wirkt sich das noch aus? Von Martin Korte